Extensions 1→N→G→Q→1 with N=C4≀C2 and Q=C22

Direct product G=N×Q with N=C4≀C2 and Q=C22
dρLabelID
C22×C4≀C232C2^2xC4wrC2128,1631

Semidirect products G=N:Q with N=C4≀C2 and Q=C22
extensionφ:Q→Out NdρLabelID
C4≀C21C22 = M4(2)⋊C23φ: C22/C1C22 ⊆ Out C4≀C2168+C4wrC2:1C2^2128,1751
C4≀C22C22 = M4(2).C23φ: C22/C1C22 ⊆ Out C4≀C2328-C4wrC2:2C2^2128,1752
C4≀C23C22 = C42.12C23φ: C22/C1C22 ⊆ Out C4≀C2168+C4wrC2:3C2^2128,1753
C4≀C24C22 = C42.13C23φ: C22/C1C22 ⊆ Out C4≀C2328-C4wrC2:4C2^2128,1754
C4≀C25C22 = D811D4φ: C22/C1C22 ⊆ Out C4≀C2168+C4wrC2:5C2^2128,2020
C4≀C26C22 = D8.13D4φ: C22/C1C22 ⊆ Out C4≀C2328-C4wrC2:6C2^2128,2021
C4≀C27C22 = C2×D44D4φ: C22/C2C2 ⊆ Out C4≀C216C4wrC2:7C2^2128,1746
C4≀C28C22 = C2×D4.9D4φ: C22/C2C2 ⊆ Out C4≀C232C4wrC2:8C2^2128,1747
C4≀C29C22 = C2×D4.8D4φ: C22/C2C2 ⊆ Out C4≀C232C4wrC2:9C2^2128,1748
C4≀C210C22 = C2×D4.10D4φ: C22/C2C2 ⊆ Out C4≀C232C4wrC2:10C2^2128,1749
C4≀C211C22 = C42.313C23φ: C22/C2C2 ⊆ Out C4≀C2164C4wrC2:11C2^2128,1750
C4≀C212C22 = D8○SD16φ: C22/C2C2 ⊆ Out C4≀C2324C4wrC2:12C2^2128,2022
C4≀C213C22 = D86D4φ: C22/C2C2 ⊆ Out C4≀C2164C4wrC2:13C2^2128,2023
C4≀C214C22 = D8○D8φ: C22/C2C2 ⊆ Out C4≀C2164+C4wrC2:14C2^2128,2024
C4≀C215C22 = C2×C42⋊C22φ: C22/C2C2 ⊆ Out C4≀C232C4wrC2:15C2^2128,1632
C4≀C216C22 = 2- 1+45C4φ: C22/C2C2 ⊆ Out C4≀C2164C4wrC2:16C2^2128,1633
C4≀C217C22 = C2×C8.26D4φ: C22/C2C2 ⊆ Out C4≀C232C4wrC2:17C2^2128,1686
C4≀C218C22 = C42.283C23φ: C22/C2C2 ⊆ Out C4≀C2324C4wrC2:18C2^2128,1687
C4≀C219C22 = M4(2)○D8φ: C22/C2C2 ⊆ Out C4≀C2324C4wrC2:19C2^2128,1689
C4≀C220C22 = C2×C8○D8φ: trivial image32C4wrC2:20C2^2128,1685
C4≀C221C22 = M4(2).51D4φ: trivial image164C4wrC2:21C2^2128,1688

Non-split extensions G=N.Q with N=C4≀C2 and Q=C22
extensionφ:Q→Out NdρLabelID
C4≀C2.C22 = D8○Q16φ: C22/C2C2 ⊆ Out C4≀C2324-C4wrC2.C2^2128,2025

׿
×
𝔽